
 
1 

CAAP Quarterly Report 
Date of Report: June 30, 2020 

 
Prepared for: U.S. DOT Pipeline and Hazardous Materials Safety Administration 

 
Contract Number: 693JK31950001CAAP 

 
Project Title: Improved NDT Detection and Probabilistic Failure Prediction for Interacting 
Pipeline Anomalies 

 
Prepared by: Sijun Niu, Shruti Trivedi, William Back, and Dr. Vikas Srivastava 

 
Contact Information:  
Vikas Srivastava 
Assistant Professor of Engineering 
Brown University 
184 Hope Street, Box D, Providence, RI 02912 
Email: vikas_srivastava@brown.edu 
Phone: 401-863-2863 

 
For quarterly period ending: June 30th, 2020 

 
Business and Activity Section 

 
(a) Contract Activity 

No modifications were made to the contract.  

(b) Status Update of Past Quarter Activities 

We have generated large datasets using our 2D finite element numerical simulations of 
ultrasonic testing of a steel (pipe) plate by varying multiple crack geometric parameters to be 
used with our neural network study. We have demonstrated success in prediction of crack length, 
location and orientation with reasonably good accuracy for the 2D case. Prediction for more 
than one crack parameter was achieved. We have been able to predict regression type continuous 
output using our machine learning method. We have also conducted literature review on 
probabilistic failure prediction of pipelines. Specifically, we have identified two established 
equations that model the burst pressure of defect-free and corroded pipes and have started to 
study their response using our probabilistic framework.  

(c) Cost share activity 
Partial support for the Ph.D. student tuition was provided by Brown University School of 
Engineering as per the cost share agreement.   
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1. Background and Objectives in the 2nd Quarter 
 
1.1 Background 

Application of popular ultrasonic non-destructive testing (NDT) technique remains 
challenging for crack characterization in pipelines as data interpretation is performed by 
people, which results in significant uncertainty in accurate crack feature predictions.[1][2] 
As hypothesized in our research, using a machine learning based automated solution to 
detect cracks has the potential to provide significantly more accurate results.[3][4][5] 
However, very limited publications report predictions over crack geometric properties 
such as size, location and orientation due to the lack of data, and they do not support 
continuous output (regression type).[6] These geometric parameters are of great 
importance since they determine the lifespan and failure conditions of pipelines. 
Fracture mechanics is probabilistic in nature. Cylindrical pressurized vessels such as 
pipelines are prone to burst if cracks are present in the body. Many models already exist 
which try and predict the burst pressure of pipes using parameter-based criteria. However, 
these models are deterministic and rely heavily on the accuracy of inputs.[7][8] Given their 
exposure to the elements and the high internal pressure within these pipes, input 
measurements may not always be as accurate as what is needed for a deterministic model. 
Dealing with pipelines that may be transporting dangerous materials, there is no room for 
error. Thus, it is of importance that a probabilistic approach is developed which allows 
the model to take into account variability of input conditions and provides risk based 
failure predictions. 
 

1.2 Objectives in the 3rd Quarter 
During the second quarter, we successfully built an early dataset for the training and 
validation of the NN using 2D case. We performed a simple regression test regarding 
crack size and the results were very promising. In this quarter, we aimed to continue to 
use 2D numerical simulations to generate new datasets with sufficiently large data in each 
of these datasets. New datasets will have one or more crack geometric parameters for 
advance characterization of cracks, hence requiring a much larger volume of data. Also, 
we aimed to train a fully functional NN that is capable to predict multiple geometric 
parameters of cracks simultaneously with high confidence. Regarding the aim 2 in original 
proposal, we aim to conduct literature review on the current state-of-art failure prediction 
for pressurized cylindrical vessels. Lastly, we aimed to identify important deterministic 
bursting pressure equations and then study them to develop probabilistic failure 
assessment. 

 
2.  Experimental and Computational Program in the 3rd Quarter 

2.1 Experimental design 

Olympus EPOCH 650 Digital Ultrasonic Flaw Detector was acquired using Brown fund. 
Basic ultrasound test supplies were also acquired for future experimentation. 



 
3 

2.2 Computational setup 

All computations were conducted on an existing workstation desktop (early computations 
are relatively smaller sized).  

We studied finite element based numerical simulation requirements for sound wave 
propagation in steel pipelines. All of our numerical study used an ultrasound wave of 5 
MHz frequency and wavelength of ~1.2 mm.  

A steel plate geometry (which we will refer to as ‘plate’ later on) with width 60 mm and 
thickness 20 mm was used in our simulations. 50 elements in total on the bottom surfaces 
are assumed to be both the ultrasound signal exciter and receiver by monitoring the 
longitudinal wave (common in industry practice) for embedded cracks inside the plate. A 
short 5 mm long ultrasound signal exciter with 5 MHz raised-cosine type waveform was 
applied as boundary condition to one edge of the plate thickness. Profile for this waveform 
is shown in Figure 1. Step size is fixed at 𝟐 × 𝟏𝟎%𝟗 s which corresponds to a 500 MHz 
sampling rate. Artificial anomalies in the form of elliptical cracks are placed in the plate. 
We conducted dynamic numerical simulations in Abaqus/Explicit and analyzed the 
displacement history profile at the selected point receiver locations on the plate surface. 

Figure 1. 5MHz, 3 period raised-cosine type pulse signal used in the simulations. 
 
 

3. Results and Discussion 
As described in the object section, we aimed to address four major problems in this quarter, 
namely 

● To generate several large datasets using 2D UT numerical simulations where 
multiple geometric parameters of elliptical crack including size, location and 
orientation were systematically varied 

● To build a fully functional NN for characterization of multiple crack properties  
● To start literature review on failure prediction of pipelines 
● To identify important deterministic equation for burst pressure and develop our early 

probabilistic prediction method 
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We will discuss all four problems in the following subsections. 

3.1 Technical approach and result 

In consistency with the previous quarter, our current focus is still elliptical embedded 
cracks. Five parameters were identified for an elliptical crack and illustrated in Figure 2. 

 

Figure 2. Five geometric parameters identified for an elliptical crack 

To review the meaning of the five parameters, the location of the crack is characterized 
by a vector with two parameters 𝒙 and 𝒚, indicating the center of the ellipse. 𝒂 is the short 
axis of the ellipse, 𝒃 is the long axis of the ellipse and they both define the crack. size. 𝜽 
is the angle that long axis made with the horizontal direction, used to characterize the 
orientation.  

Unlike the previous quarter, we have created several large datasets of 2D geometries that 
have more than one parameter varying. The information of the datasets is summarized in 
Table 1. Orientation is of particular interest to us because to our best knowledge, existing 
publications have not predicted such a feature as a continuous output. Dataset 2 will be 
discussed firstly. In practice, crack size is most crucial parameter that affects the integrity 
of pipeline. Hence dataset 5 is particularly interested to us and is generated for size and 
orientation combined prediction and will be studied thoroughly. 

Table 1. Summary  of datasets with different parameters, bold numbers indicate a range 
in which the corresponding parameter varies 

 𝒙 (mm) 𝒚 (mm) 𝒂 (mm) 𝒃 (mm) 𝜃 Number of 
simulations 

Dataset 1 0 15 1 [1, 3] 0 479 
Dataset 2 0 15 0.5 1.5 [0, 𝝅] 957 
Dataset 3 0 15 1 [1, 3] 𝜋/4	 446 
Dataset 4 0 [7, 16] 1 [1, 3] 𝜋/4	 1878 
Dataset 5 0 15 1 [1, 3] [0, 𝝅] 3728 

We used MALTAB’s deep learning toolbox to build our neural network. Feature selection 
was performed using WPT as was before. In addition, we applied signal filtering to the 
original signal using MATLAB’s signal processing toolbox to acquire better signal 
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quality. For a faster training process, we started with a simple three-layer structure: one 
input layer, one hidden layer and one output layer.  

Here we demonstrate the orientation prediction for dataset 2 for a typical run. The results 
are shown in Figure 3. The circles on the left panel represent individual test data (with 
different orientation) and the blue line represents the prediction value. All data have been 
normalized into the region (0, 1). The R value is very high (> 0.99), similar to the size 
prediction we reported in the previous quarter. Error histogram also follows closely to a 
Gaussian distribution with maximum relative error less than 8%.  

 

Figure 3. MATLAB NN regression plot (left) and error histogram (right) for predicting 
crack orientation 

In Figure 4 we show combined prediction for crack long axis and orientation 
simultaneously using dataset 5. By tuning the parameters for our NN, we can again 
achieve very high R value for crack long axis, which is over 0.99. For orientation, R value 
reached over 0.98. It is worth noting that there exist several data points whose orientations 
have been predicted poorly even for R value over 0.98. These off-points can be justified 
by the insufficient size of our dataset. As shown in Figure 5, with a 2-fold reduction in 
data numbers and leave all the NN parameters unchanged, the prediction is a lot worse 
than that of dataset 5. This highlights the importance of size of dataset for the accuracy 
of a NN. 
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Figure 4. MATLAB NN regression plot of crack long axis (left) and of orientation 
(right) simultaneously for combined parameter (dataset 5) 

 
Figure 5. MATLAB NN regression plot of crack long axis (left) and of depth (right) 

simultaneously for combined parameter (dataset 4)  

Research work regarding probabilistic failure prediction of pipelines has been initiated in 
this quarter. We conducted literature review of models predicting burst pressure of thin-
walled, defect-free pipelines subjected to internal pressure as a starting point. In the paper 
by Zhu and Leis [7], 20 models are summarized and presented. Among the models, the 
ASTM boiler code was considered one of the most accurate models. This model has three 
input parameters in total, namely the ultimate stress 𝝈𝒖𝒕𝒔, inner diameter of the pipe 𝑫𝒊, 
and the outer diameter 𝑫𝒐. The burst pressure is then given by the deterministic equation 

𝑷𝒃 = 	𝝈𝒖𝒕𝒔 ;
𝑫𝒐
𝑫𝒊
%𝟏

𝟎.𝟔𝑫𝒐
𝑫𝒊

>𝟎.𝟒
@                                                      (1) 
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For X80 ex-mill pipes (selected as a trial example), the experiments showed that the 
bursting pressure of such pipe is 27.44 MPa, given the inner and outer diameters and the 
ultimate stress of 343 mm, 359.9 mm and 677 MPa, respectively. However, these 
parameters are not error-free and there exist distribution ranges around the mean values 
that they fall in. To show this, we used a probabilistic approach in which each parameter 
follows a normal distribution with the mean value given above and a variance to be fine-
tuned. We found that our model prediction follows a normal distribution with a peak 
around 26.83 MPa as shown in Figure 6, which is more accurate than the deterministic 
prediction of 26.78 MPa from equation (1) when comparing to the experimental value. 
Also, it provides a range of possible bursting pressures, from 26.7 MPa to 26.95 MPa, 
which could serve as a guiding principle for practical use. 

 

Figure 6. Probabilistic bursting pressure prediction of an end-capped, thin-walled, 
defect-free pipe using ASTM boiler code. Purple shaded area is the probability density 

and the red curve represents the fitted normal distribution of the outcome. 

 

3.2 Discussion  

In the recent quarter, we successfully accomplished the aims that are discussed above. Using 
the 2D case, we have demonstrated that orientation and length predictions for cracks can be 
accurately obtained using our methodology. We showed that we can achieve relatively high 
accuracy for  more than one parameter and also demonstrated that errors increase when 
insufficient size of dataset is used for NN training. Next step is to apply our methodology for 
more challenging but more important and practical 3D geometries. 

We identified several important mathematical models that are currently used to predict pipe 
bursting pressure in a deterministic fashion. We conducted studies to assess application of 
existing established models for risk based failure prediction. Our preliminary studies show 
we can determine probabilistic burst pressure prediction with a Gaussian-like distribution.   

 



 
8 

4. Future Research 

We have demonstrated a fully functional NN that can predict multiple crack geometry 
parameters with relatively high confidence when aided by large datasets. However, the current 
simulation setup is limited to a two-dimensional plane strain condition which does not fully 
represent the real cracks in pipelines. Following our success with our 2D simulation based 
NN predictive results, we aim to develop a 3D numerical simulation methodology and 
develop full three-dimensional simulation datasets which mimics the real world. Once our 
NN has been trained by the new datasets, we aim to conduct validation experiments using the 
Olympus Ultrasound test equipment that we currently have in the lab. 

Further work on probabilistic modeling of burst pressure of pipelines will be conducted 
including risk based burst pressure prediction for corroded pipelines [8]. We will study 
mathematical models for pipes with embedded cracks, and pipes with corrosion wall loss, 
besides the case of macroscopic defect-free pipe. In addition to mathematical 
phenomenological models, we will also study a more physical model for pipeline failure 
assessment.   
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